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Abstract. This paper provides a means for comparing various computer codes for solving large
scale mixed complementarity problems. We discuss inadequacies in how algorithms are currently
compared, and present a testing environment that partially solves these inadequacies. This testing
environment consists of a library of test problems, along with GAMS and MATLAB interfaces that
allow these problems to be easily accessed. Eight different algorithm implementations for large
scale mixed complementarity problems are briefly described and tested with default parameter
settings using the new testing environment.
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1. Introduction

In recent years, a considerable number of new algorithms have been developed for
solving large scale mixed complementarity problems. Many of these algorithms
appear very promising theoretically, but it is difficult to understand how well they
will work in practice. Indeed, many of the papers describing these algorithms are
primarily theoretical papers and include only very minimal computational results.
Even with extensive testing, there are inadequacies in the way the results are re-
ported, which makes it difficult to compare one approach against another.

The purpose of this paper is to develop a testing environment for evaluating the
strengths and weaknesses of various codes for solving large scale mixed complemen-
tarity problems. The intention is to provide a guide for modelers in determining
which code best fits their needs and to help algorithm designers focus developmental
efforts toward practical and useful codes.

The mixed complementarity problem (MCP) is a generalization of a system of
nonlinear equations and is completely determined by a nonlinear function F : R® —
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R™ and upper and lower bounds on the variables. The variables z must lie between
the given bounds £ and u. The constraints on the nonlinear function are determined
by the bounds on the variables in the following manner:

b < zp <up = FZ'(Z)ZO
zi =u; = Fi(z) <0.

We will use the notation B to represent the set [£, u].

Several special cases of this formulation are immediately obvious. For example,
if f = —oo0 and u = 400 then the last two implications are vacuous and MCP is
just the problem of determining z € R” such that F(z) = 0.

As another example, the Karush-Kuhn-Tucker conditions for nonlinear programs
of the form

min f(z)
st. g(x) <0

are given by

Vf(z) +AVg(z) =0,
g(x) <0, A >0, \g(z) = 0.

These are easily recast as an MCP by setting

2= [i],F(z): [Vf(m)_“;(i)vg(“j)  B=R"xRT.

Here RTP represents the nonnegative orthant of R™. There has been much recent
interest in less traditional applications of the complementarity framework. Some
of these are based on the generalized equation literature [29] that reformulates the
MCP as 0 € F(z) + Ng(z). Here Ng(z) is the classical normal cone to the set B
at the point z defined by

Np(z) := {y|yT(r—z) SOV;L‘EB},

if z € B and is empty otherwise. Many problems in economic equilibrium theory
can be cast as MCPs and an overview of how this is accomplished is given in [32].
Other application areas are detailed in [7], [12].

Nonlinear complementarity problems appeared in the literature in [5]. The first
algorithms for these problems were based on simplicial labeling techniques originally
due to [33]. Extensions of these algorithms led to fixed point schemes [18], [34].
These algorithms have very powerful theoretical properties but have been somewhat
ineffective at solving large scale problems. Newton techniques [8], [23], [31] that are
based on successive linearization of the nonlinear problem have proven more useful
for solving these problems, although their convergence analysis is less satisfactory
than the fixed point theory. Recent extensions have looked at reformulating the



nonlinear complementarity problem as a system of nonsmooth nonlinear equations
and solving these using a damped Newton or Gauss-Newton approach [6], [8], [10],
[11], [13], [16], [19], [20], [21], [24], [25], [26], [27], [28], [30], [35], [36].

We are concerned in this paper with computational testing and comparison of
such algorithms. We see several problems with the current state of affairs in the
way codes are developed and compared.

1. Codes are tweaked to solve particular problems, with different choices of control
parameters being used to solve different problems. This is contrary to how
codes are used in practice. In general, modelers are not interested in tweaking
parameters; instead, they usually run codes only with default options. A good
code will have a set of default parameters that performs well on most problems.

2. Even when a consistent set of control parameters i1s used, codes are developed
and tuned using the same set of test problems for which computational results
are reported. Consequently, the results do not give a fair picture of how the
codes might behave on other problems.

3. There is no clear understanding of what makes problems difficult. Thus, test
cases reported do not necessarily reflect the various difficulties that can cause
algorithms to fail. As a result, it is extremely difficult for a modeler to determine
which algorithm will work best for his particular class of problems.

4. The majority of papers written are theoretical in nature and provide computa-
tional results only for naive implementations of the algorithms. While this can
exhibit the potential of a particular approach, it is inadequate for evaluating
how an algorithm will work in practice. Instead, computational results need to
be reported for sophisticated implementations of the algorithms.

5. Test problems do not reflect the interests of users with real-world applications.
Thus, algorithms are developed which are good at solving “toy” problems, but
are not necessarily good at solving problems of practical importance.

These problems in the way codes are currently tested result in two major deficien-
cies in the usefulness of test results. First, the reported results are inadequate for
modelers to determine which codes will be most successful for solving their prob-
lems. Second, it is difficult for algorithm developers to determine where additional
research needs to be directed.

In order to overcome these difficulties, this paper proposes that a testing envi-
ronment for large scale mixed complementarity problems be developed. The goals
of this environment are again twofold: first, it should provide a means of more
accurately evaluating the strengths and weaknesses of various codes, and second,
it should help direct algorithm developers toward addressing the issues of greatest
importance. A preliminary version of such an environment is described in Section 2
and was used to generate the computational results reported in Section 4. A brief
description of each of the codes tested is provided in Section 3.



2. Testing Environment

This section describes a testing environment that corrects many of the problems
discussed in the introduction concerning how codes are developed and tested. This
environment has four main components: a library of test problems, GAMS and
MATLAB interfaces that allow these problems to be easily accessed, a tool for
verifying the correctness of solutions, and some awk scripts for evaluating results.

2.1. Test Library

The centerpiece of the testing environment is a large publicly available library of test
problems that reflects the interests of users with real-world applications, and that
also includes problems having known types of computational difficulties. Many of
these problems are contained in the standard GAMS distribution [3], while others
are part of the expanding collection of problems called MCPLIB[7]. All of the
problems that are used in this work are publicly available and can be accessed both
from within the GAMS modeling system[3] and from within MATLAB[14].

Because most of the problems in the test library come from real-world applica-
tions, the library reflects, as much as possible, the needs of the user community. As
this library has become more popular among code developers, we have observed an
increased interest among modelers to contribute more and more challenging prob-
lems to the library. The motivation is simple: modelers want to encourage the
development of codes capable of solving their most difficult problems.

We note that many of the problems contained in the test library are difficult for
varying reasons. We believe that it is important to identify the characteristics that
make problems hard. Toward this end, we give an incomplete classification of the
types of problem difficulties that may prove challenging for different algorithms.

1. Nonlinearity. We characterize the nonlinearity of a problem by how well a local
linearization of the function models the original problem. One difficulty encoun-
tered in highly nonlinear problems is the presence of local minima of the un-
derlying merit function that do not correspond to solutions. Several algorithms
include features that allow them to escape such local minima, for example, per-
turbational schemes and nonmonotone watchdog procedures. Thus, we expect
that certain algorithms will be more sensitive to the degree of nonlinearity than
others.

2. Active Set Determination. For many problems, once the active set is deter-
mined, (that is, once we determine which variables are at their upper and lower
bounds) the given algorithm is quick to converge. Thus, quick identification
of the active set can greatly improve the performance of the algorithm. This
seems to be particularly true for problems that are nearly linear.

3. Problem Size. Some algorithms may be better at exploiting problem structure
than others, making them less sensitive to the size of the problem. One weakness



of our current test suite is that it does not address the issue of size very well.
We have attempted to include problems of reasonable size, but it is clear that
the test library needs to be expanded in this area.

4. Sensitivity to Scaling. Our experience is that modelers, of necessity, tend to
become very good at scaling their models so that relevant matrices are rea-
sonably well-conditioned. Indeed, most of the problems in our model library
are well scaled. However, models under development are often poorly scaled.
Frequently, solutions are used to scale models properly and to aid in the model
construction. Thus, sensitivity to scaling is quite important. In general it is
very difficult to scale highly nonlinear functions effectively, so that an algo-
rithm that is less sensitive to scaling may prove to be more practical for highly
nonlinear problems.

5. Others. Several other problem characteristics have been proposed, but have not
been well studied in the context of real models. These include monotonicity,
multiple solutions, and singularity at the solution.

Tables 1 and 2 describe the problems that are included in the test library. Further
documentation on these problems can be found in [32] and [7] respectively. Since
the starting point can greatly influence the performance of an algorithm, the library
includes multiple starting points for most problems. The following abbreviations
are used when referring to the type of the problem:

MCP General mixed complementarity problem

LMCP Linear mixed complementarity problem

NCP Nonlinear complementarity problem

LCP Linear complementarity problem

MPSGE General economic equilibrium problems defined with
the MPSGE macro language

NE Nonlinear equations

NLP Optimality conditions of a nonlinear program

The tables also include a column labeled “other”. In this column we have added
some known characteristics of the problems. Thus “M” is entered in this column if
the problem is known to be monotone. Similarly a digit “4” for example indicates
the number of known solutions. If an “S” occurs in this column then the submatrix
of the Jacobian corresponding to the “active constraints” is known to have condition
number greater than 10® at a solution. The fact that one of these entries does not
appear in the table only signifies that the authors do not know whether the problem
has this particular characteristic.



Table 1. GAMSLIB Models

| Model | Type | n | nnz | density | other |
cafemge MPSGE | 101 | 900 8.82%
cammcp NCP 242 | 1621 2.77%
cammge MPSGE | 128 | 1227 7.49%
cirimge MPSGE 9 33| 40.74%
co2mge MPSGE | 208 | 1463 3.38%
dmcmge MPSGE | 170 | 1594 5.52%
ers82mcp MCP 232 | 1552 2.88%
etamge MPSGE | 114 | 848 6.53%
finmge MPSGE | 153 | 1915 8.18%
gemmcp MCP 262 | 2793 4.07%
gemmge MPSGE | 178 | 3441 | 10.86%
hansmcp NCP 43 | 398 | 21.53%
hansmge MPSGE 43 503 27.20%
harkmcp NCP 32| 131 12.79%
harmge MPSGE | 11 60 | 49.59%
kehomge MPSGE 9 75 92.59% 3
kormcep MCP 78 | 423 6.95%
mrbmcep NCP 350 | 1687 1.38%
nsmge MPSGE | 212 | 1408 3.13%
oligomcp NCP 6 21 | 58.33%
sammge MPSGE | 23| 117 | 22.12%
scarfmcp NCP 18 | 150 | 46.30%
scarfmge MPSGE | 18 | 181 | 55.86%
shovmge MPSGE | 51| 375 | 14.42%
threemge MPSGE 9 77| 95.06%
transmcp LCP 11 34 | 28.10%
two3mcp NCP 6 29 | 80.56%
unstmge MPSGE 5 25 | 100.00%
vonthmcp NCP 125 | 760 4.86% S
vonthmge MPSGE | 80 | 594 9.28%
wallmep NE 6 25 | 69.44%




Table 2. MCPLIB Models

Model | Type n | nnz | density | other |
bertsekas NCP 15 74 | 32.89%
billups NCP 1 1| 100.00% 1
bert_oc LMCP 5000 | 21991 0.09% M
bratu NLP 5625 | 33749 0.11%

choi NCP 13 169 | 100.00%
colvdual NLP 20 168 | 42.00%
colvnlp NLP 15 113 | 50.22%

cycle LCP 1 1] 100.00% M1
ehl_kost MCP 101 | 10201 | 100.00%

explep LCP 16 152 | 59.38% 1
freebert MCP 15 74 | 32.89%

gafni MCP 5 25 | 100.00%
hanskoop NCP 14 129 | 65.82%
hydroc06 NE 29 222 | 26.40%
hydroc20 NE 99 838 8.55%
josephy NCP 4 16 | 100.00% 1
kojshin NCP 4 16 | 100.00% 2
mathinum NCP 3 9 | 100.00%
mathisum NCP 4 14 | 87.50%
methan08 NE 31 225 | 23.41%

nash MCP 10 100 | 100.00%
obstacle LMCP/NLP | 2500 | 14999 0.24% M1
opt_cont LMCP 288 | 4928 5.94% M1
pgvonl05 NCP 105 796 7.22% S
pgvonl06 NCP 106 898 7.99% S
pies MCP 42 183 | 10.37%

powell NLP 16 203 79.30% S
powell_mcp NCP 8 54 | 84.38%
scarfanum NCP 13 98 | 57.99%
scarfasum NCP 14 109 | 55.61%
scarfbnum NCP 39 361 | 23.73%
scarfbsum NCP 40 614 | 38.38%

sppe NCP 27 110 | 15.09%

tobin NCP 42 243 13.78%




2.2. Interfaces

To make the test library useful, two interfaces are provided that make the problems
easily accessible both for testing of mature codes and for evaluating prototype
algorithms.

The first interface is a means for programs to communicate directly with the
GAMS modeling language [3]. For realistic application problems, we believe that
the use of a modeling system such as AMPL[17] or GAMS is crucial. In earlier
work with Rutherford[9], we developed the GAMS/CPLIB interface that provides
simple routines to obtain function and Jacobian evaluations and recover problem
data. This makes it easy to hook up any solver that is written in Fortran or C
as a subsystem of GAMS. The advantages of using a modeling system are many;
some of the most important advantages include, automatic differentiation, easy data
handling, architecture-independent interfaces between models and solvers, and the
ability to extend models easily to answer new questions arising from solutions of
current models. In addition, modeling languages provide a ready library of examples
on which to test solvers. GAMS was chosen for our work instead of AMPL because
it is a mature product with many users, resulting in the availability of many real-
world problems.

While we believe that any mature code should be connected with a modeling
language, we also feel that there should be an easier means for making the library of
test problems available to prototype algorithms. The MATLAB interface described
in [14] provides such a means. Using MATLAB, it is possible to quickly implement
a prototype version of a new algorithm, which can be tested on the entire suite
of test problems with the MATLAB interface. Thus, the test library can play an
active role in influencing the development of new algorithms.

2.3. Verification of Solutions

Since stopping criteria vary from algorithm to algorithm, a standardized measure
is needed to ensure that different algorithms produce solutions that have some
uniformity in solution quality. To achieve this goal, we developed an additional
solver, which is accessible through GAMS, that evaluates the starting point and
returns the value of the following merit function:

I1F(7B) + 2 — 78], (1)

To use this verification test, we first solve the problem with the algorithm we are
testing, and pass the solution to our “special” solver to verify that the standardized
residual is not too large. Since the special solver is callable from GAMS, this can
be achieved by adding a few lines to the GAMS problem files.



2.4. Data Extraction

The output of MCP codes is typically quite extensive and varies from solver to
solver. To extract pertinent information from this output, we have written several
awk scripts that read through the files, and then generate data tables. These scripts
require slight modifications for each solver, but are a tremendous help in extracting
data to produce meaningful information.

3. Description of Algorithms

To get a fair assessment of how well a particular method works, the comparison of
algorithms ultimately needs to be performed on mature codes. Therefore, for our
comparison, we restrict ourselves to those codes for which a sophisticated imple-
mentation exits. All of the codes outlined below have been coded to take explicit
advantage of the MCP structure; several of them were originally devised for the
special case of the nonlinear complementarity problem (NCP)

2>0,F(2)>0,27F(2) =0

and will be described below in this context. We now give a brief description of the
codes that were tested and indicate pertinent references for further details.

3.1. MILES

MILES [31] is an extension of the classical Josephy-Newton method for NCP in
which the solution to each linearized subproblem

0€ F(*) + VF(*)(z — 2F) + Np(2)

is computed via Lemke’s almost-complementary pivot algorithm. This Newton
point is used to define the Newton direction, which is then used in a damped
linesearch. The merit function used measures both the violation in feasibility and
in complementarity. MILES also employs a restart procedure in cases where the
Newton point cannot be computed due to termination in a secondary ray. Every
linearized subproblem is rescaled to equilibrate the elements appearing in the data
of the subproblem.

3.2. PATH

The PATH solver [8] applies techniques similar to those used in Newton methods
for smooth systems to the following reformulation of the MCP

0= F(nrp(z)) + z — ().
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Here mp represents the projection operator onto the set B, which is in general
not differentiable. The algorithm consists of a sequence of major iterations, each
consisting of an approximation or linearization step similar to that of MILES, the
construction of a path to the Newton point (the solution to the approximation), and
a possible search of this path. When the Newton point does not exists or the path
cannot be entirely constructed, a step along the partially computed path is taken
before the problem is relinearized. A nonmonotone watchdog strategy is employed
in applying the path search; this helps avoid convergence to local minima of the
norm function for the underlying nonsmooth equation and keeps the number of
function evaluations required as small as possible.

Other computational enhancements employed by PATH are a projected Newton
preprocessing phase (used to find an initial point that better corresponds to the
optimal active set) and the addition of a diagonal perturbation term to the Ja-
cobian matrix when rank deficiency is detected. The Jacobian elements are also
automatically scaled by the algorithm at each major iteration.

3.3. NE/SQP

The NE/SQP algorithm [27] is based upon reformulating the NCP as the system
of nonsmooth equations

0= H(z) :=min{z, F(2)}.
In [2] the NE/SQP algorithm is extended to the MCP by using the reformulation
0= H(z) :=min{z — {,max{z — u, F(2)}} (2)
Both algorithms use a Gauss-Newton approach that attempts to minimize
0(z) = | (2)”

to find a zero of H. The nonsmoothness of the equations is handled using di-
rectional derivatives of H. Specifically, at each iteration, a search direction is
calculated by minimizing a convex quadratic program whose objective function is
formed by squaring a linear approximation of H. At points where the derivative
is not well defined, the linear approximation is created by choosing a particular
element of the subdifferential. Once this direction is determined, an Armijo-type
linesearch is used to calculate the step size to be taken along that direction. The
advantage of this approach is that the direction finding subproblems are always
solvable. This is in contrast to Newton-based approaches, which may fail due to a
singular Jacobian matrix, and to PATH and MILES, which determine the search
direction by attempting to solve a linear complementarity problem, which may, in
fact, be unsolvable.

One weakness of the algorithm is that it is vulnerable to converging to local
minima of the merit function # that are not solutions to the problem. The code
uses scaling of the subproblems and enforces a small cushion between the iterates
and the boundary of B as suggested in [27].
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3.4. SMOOTH

The SMOOTH algorithm [4] is based upon reformulating the NCP as a system of
nonsmooth equations

r = ﬁRgr(:c — F(z)),

and then approximately solving a sequence of smooth approximations, which lead to
a zero of the nonsmooth system. More precisely, at each iteration, a smooth approx-
imation to the original system is formed where the accuracy of the approximation
is determined by the residual of the current point. The smooth approximation to
TR™ corresponds to an integration of the sigmoid function that is commonly used in
machine learning. Applying a single step of Newton’s method to this smooth func-
tion generates a search direction. The next iterate is then generated by performing
an Armijo-type linesearch along this direction. Assuming this new point produces
an improved residual, the next iteration is based upon a tighter approximation of
the nonsmooth equations.

An initial scaling of the data is used in the code, and the PATH preprocessor is
used. However, in SMOOTH, the preprocessor is used to try to solve the MCP
instead of merely to identify the active set. If this technique fails, the code is
restarted and the smoothing technique is then used to find a solution.

3.5. QPCOMP

QPCOMP [2] is an enhancement of the NE/SQP algorithm, which adds a prox-
imal perturbation strategy that allows the iterates to escape local minima of the
merit function. In essence, the algorithm detects when the iterates appear to be
converging to a local minimum, and then approximately solves a sequence of per-
turbed problems to escape the domain of convergence of that local minimum. The
perturbed problems are formed by replacing F with the perturbed function

FYM = F(2) + Mz — 2), (3)

where the centering point z is generally chosen to be the current iterate, and the
perturbation parameter A is chosen adaptively in a manner that guarantees global
convergence to a solution when F' is both continuously differentiable and pseu-
domonotone at a solution. In general, the perturbed function is updated after each
iteration. Thus, the perturbed problems are not solved exactly; they are just used
to determine the next step.

An important aspect of the algorithm is that F is perturbed only when the iterates
are not making good progress toward a zero of the merit function. In particular,
during the perturbation strategy, whenever an iterate is encountered where the
merit function (of the unperturbed problem) has been sufficiently reduced, the
algorithm reverts to solving the unperturbed problem. Thus, near a solution, the
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algorithm maintains the fast local convergence rates of the underlying NE/SQP
algorithm.

We note that NE/SQP is equivalent to QPCOMP without the proximal pertur-
bation strategy. Thus, to test NE/SQP, we simply ran the QPCOMP algorithm
with the proximal perturbation strategy turned off.

3.6. PROXI

PROXT [1], like NE/SQP and QPCOMP is based upon reformulating the MCP as
the system of nonsmooth equations (2). However, instead of solving this system
using a Gauss-Newton approach, PROXI uses a nonsmooth version of Newton’s
method. Specifically, at each iteration, the search direction is calculated by solving
a linear system that approximates H at the current iterate. Again, if H is not
differentiable at the current iterate, the linear approximation is created by choosing
a particular element of the subdifferential.

Like QPCOMP, PROXI uses a proximal perturbation strategy to allow the it-
erates to escape local minima of the merit function ¢#. This strategy also allows
the algorithm to overcome difficulties resulting from singular Jacobian matrices.
In particular, if the Newton equation is unsolvable at a particular iteration, the
algorithm simply creates a slightly perturbed problem using (3) with a very small
A. The resulting Newton equation for the perturbed function will then be solvable.
This strategy for dealing with unsolvable Newton subproblems is considerably more
efficient than the Gauss-Newton approach used by NE/SQP and QPCOMP.

3.7. SEMISMOOTH

SEMISMOOTH [1] is an implementation of an algorithm described in [6]. This
algorithm is based upon the function

é(a,b) = /a2 + b2 — (a+b),

which was introduced by [15]. This function has the property that
é#(a,b)=0<=a>0,b6>0,ab=0.

Using this function, the NCP is reformulated as the semismooth system of equations
0=(z),

where ®;(z) := ¢(zi, F;(z)). This reformulation has the nice feature that the natural
merit function ¥(z) := ||<I>(z)||2 is continuously differentiable. The SEMISMOOTH

algorithm described in [1] extends the approach to the MCP by using the reformu-
lation of MCP given by

Q;(2) := &z — i, p(us — 2, —Fi(2))).
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To solve the reformulated system of equations, a generalization of Newton’s
method is used wherein at each iteration, the search direction d* is found by solving
the system

H*d = —®(2%),

k+1

where H* is an element of the B-subdifferential of ®. The next point z is then

chosen by performing a nonmonotone, Arimijo linesearch along the direction d*.

3.8. SEMICOMP

SEMICOMP [1] is an enhancement of the SEMISMOOTH algorithm, which, like
QPCOMP and PROXI, adds a proximal perturbation strategy to allow iterates to
escape local minima of the merit function. The algorithm is identical to SEMIS-
MOOQOTH except when the iterates stop making satisfactory progress toward a zero
of @. In this case, the proximal perturbation strategy described for the QPCOMP
algorithm is employed to allow the iterates to escape the troublesome region. Specif-
ically, at each iteration, a perturbed function is created by (3), and then the SEMIS-
MOOQOTH algorithm is used to calculate a new point based on this perturbed func-
tion. The perturbed function is then updated and the process repeats. The process
continues until a new point is encountered where the merit function is sufficiently

smaller than the merit function at any previous point. At this point, the algorithm
reverts back to the unperturbed SEMISMOOTH algorithm.

4. Computational Comparison

With the exception of NE/SQP and QPCOMP, each of the eight algorithms de-
scribed in the previous section was run on all of the problems in the test library
from all of the starting points. For NE/SQP and QPCOMP, we only ran the prob-
lems with fewer than 110 variables. Table 3 shows the execution time needed by
each algorithm on a SPARC 10/51, and Table 4 shows the number of function and
Jacobian evaluations required by each algorithm. To abbreviate the results, we ex-
cluded any problems that were solved in less than 2 seconds by all of the algorithms
we tested.

The algorithms were all terminated when they had reduced their residual to below
1078, Since the merit functions are different for each code, we tested the solutions
to ensure that the standardized residual given by (1) was always less than 1075.

5. Conclusions

The testing environment we have described at least partially solves many of the
problems we have observed about how codes are developed and tested. In particular,
with a large collection of test problems available, it is more difficult to tune a
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Table 3. Execution Times (sec.)

Problem | st. NE/ QP- | SEMI- | SEMI-

Name pt. || MILES SQP | PATH | PROXI | COMP | COMP | SMTH | SMTH
bert_oc 1 6.15 - 2.63 2.61 - 11.38 13.50 3.23
bert_oc 2 7.07 - 3.13 3.24 - 46.44 54.41 2.57
bert_oc 3 fail - 2.10 2.78 - 15.52 17.99 2.55
bert_oc 4 136.4 - 2.29 2.67 - 5.80 5.91 2.62
bertsekas 1 0.07 fail 0.08 0.39 2.83 0.64 fail 0.24
bertsekas 2 0.28 fail 0.04 0.27 2.41 0.59 fail 0.05
billups 1 fail fail fail 0.02 0.11 0.10 0.90 fail
bratu 1 fail — | 138.52 | 149.37 — | 7452.38 fail | 135.48
cafemge 1 0.18 | 18.16 0.29 0.50 20.11 0.50 0.66 0.41
cafemge 2 0.23 | 16.57 0.26 0.35 14.19 0.50 0.39 0.25
cammcp 1 0.50 - 0.21 2.89 - fail fail 0.23
choi 1 8.13 2.00 2.09 2.03 2.28 2.95 2.93 2.10
co2mge 2 0.43 - 0.50 0.48 - 2.02 2.42 0.52
co2mge 6 0.62 - 0.46 fail - fail fail 1.96
colvdual 1 0.05 fail 0.11 0.25 5.76 0.12 0.10 0.11
colvdual 2 0.07 fail 0.09 0.50 5.39 fail fail 0.10
colvnlp 1 0.03 fail 0.05 0.09 2.13 0.08 0.09 0.06
colvnlp 2 0.05 fail 0.03 0.05 1.62 0.06 0.05 0.05
dmcmge 1 0.20 - 3.75 fail - fail fail 5.42
dmcmge 2 0.50 - 0.55 fail - | 133.73 fail 0.60
ehl_kost 1 23.58 fail 3.86 18.50 | 611.41 18.99 15.02 4.73
ehl_kost 2 23.92 | 248.79 | 13.56 37.67 | 250.28 49.06 58.25 12.58
ehl_kost 3 24.15 fail 9.76 64.88 | 866.08 | 233.23 | 240.12 90.38
finmge 2 0.38 - 1.95 11.34 - fail fail 5.16
finmge 4 0.48 - 1.72 12.34 - fail fail 9.18
freebert 1 0.03 fail 0.07 0.39 2.72 0.51 fail 0.04
freebert 3 0.10 fail 0.05 0.25 2.86 0.55 fail 0.04
freebert 4 fail fail 0.09 0.31 2.47 0.60 fail fail
freebert 5 fail fail 0.04 0.12 1.38 0.15 0.12 0.04
freebert 6 fail fail 0.08 0.33 3.02 0.53 fail fail
gemmcp 1 2.12 - 0.21 0.16 - 0.19 0.18 0.24
gemmge 2 0.47 - 3.24 3.31 - 3.31 3.60 4.18
gemmge 3 0.55 - 1.85 1.89 - 2.88 3.92 1.85
gemmge 4 0.52 - 2.51 2.37 - 2.84 3.22 1.84
gemmge 5 0.55 - 8.85 5.00 - 5.32 6.93 2.28
hanskoop 1 0.07 0.37 0.05 0.10 0.37 fail fail 0.33
hanskoop 2 0.08 0.04 0.06 0.01 0.05 fail fail 0.02
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Problem st. NE/ QP- | SEMI- | SEMI-

Name pt. || MILES | SQP | PATH | PROXI | COMP | COMP | SMTH | SMTH
hanskoop 3 fail | 0.34 0.11 0.09 0.42 fail fail 0.23
hanskoop 4 1.10 | 0.06 0.05 0.01 0.05 fail fail 0.02
hanskoop 5 0.07 fail 0.09 0.10 0.70 0.07 0.08 0.30
hanskoop 7 0.07 fail 0.05 0.09 0.86 fail fail 0.22
hanskoop 9 fail | 0.50 0.10 0.24 0.43 0.09 0.10 0.23
hansmcp 1 0.10 fail 0.47 0.14 fail 0.16 0.16 0.13
hansmge 1 0.10 | 3.14 0.36 0.70 2.86 0.84 0.88 0.64
harkmcp 4 0.07 | 6.96 0.12 0.21 9.31 fail fail 0.37
harmge 1 0.03 fail 0.06 0.44 1.86 1.52 fail 0.09
harmge 2 0.80 fail 0.03 0.02 0.14 0.01 fail 0.03
harmge 3 0.07 fail 0.04 0.03 0.13 0.02 fail 0.04
harmge 4 0.08 fail 0.05 0.03 0.15 0.01 fail 0.04
harmge 5 0.08 fail 0.05 0.04 0.16 0.02 fail 0.04
harmge 6 fail fail 0.06 fail 3.24 0.02 fail 2.08
hydroc20 1 fail | 16.11 0.38 0.44 13.31 0.54 0.41 0.36
josephy 1 fail fail 0.03 0.02 0.08 0.02 0.01 0.03
josephy 2 fail fail 0.04 0.02 0.07 0.02 0.02 0.02
josephy 4 fail fail 0.02 0.01 0.04 0.01 0.01 0.02
josephy 6 fail | 0.04 fail 0.02 0.05 0.01 0.01 0.02
kojshin 1 fail fail 0.03 0.01 0.07 0.02 0.03 0.03
kojshin 3 0.03 fail 0.06 0.05 0.12 0.06 0.07 0.11
kormep 1 0.23 | 2.82 0.08 0.06 2.82 0.07 0.05 0.05
mrbmcp 1 0.60 - 0.62 2.17 - 2.09 2.01 0.62
nsmge 1 0.25 - 0.91 1.64 - 1.69 1.65 2.40
obstacle 1 2.37 - 2.36 3.40 - 6.86 5.59 2.39
obstacle 2 fail - 5.90 7.33 - 18.01 15.56 6.39
obstacle 3 fail - 5.03 8.85 - 11.77 9.45 6.27
obstacle 4 3.98 - 4.84 9.29 - 11.01 10.66 6.12
obstacle 5 fail - 8.04 4.52 - 15.08 14.59 7.13
obstacle 6 fail - 8.86 9.92 - 19.62 21.14 10.07
obstacle 7 fail - 7.39 7.57 - 12.84 15.52 7.97
obstacle 8 fail - | 13.84 7.54 - 14.76 14.32 10.58
opt_cont127 1 8.52 - 8.14 9.91 - 46.05 45.58 6.38
opt_cont255 1 fail - | 14.86 18.71 - | 107.97 | 110.61 13.80
opt_cont31 1 2.10 - 1.36 1.51 - 5.55 4.45 1.65
opt_contb11 1 fail - | 39.51 43.19 — | 348.63 | 360.42 37.52
pgvonl05 1 fail fail 1.54 7.99 fail fail fail fail
pgvon105 2 0.42 | 41.51 0.77 2.18 50.91 fail fail fail
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Table 3. Execution Times (continued)

Problem st. NE/ QP- | SEMI- | SEMI-

Name pt. || MILES | SQP | PATH | PROXI | COMP | COMP | SMTH | SMTH
pgvonl05 3 fail | 33.47 1.58 52.13 58.80 fail fail fail
pgvonl05 4 fail fail fail fail fail 28.09 fail fail
pgvonl06 1 fail fail | 19.77 13.21 fail fail fail | 125.46
pgvonl06 2 fail fail 1.80 fail fail fail fail 5.37
pgvonl06 3 fail fail 1.29 fail fail fail fail 8.48
pgvonl06 4 fail fail fail 2.46 fail 38.30 fail fail
pgvonl06 5 5.33 fail fail fail fail fail fail fail
pgvonl06 6 fail fail fail fail fail fail fail 3.76
pies 1 0.07 fail 0.13 0.29 7.26 0.11 0.13 0.27
sammge 1 0.07 fail 0.01 0.01 fail 0.00 0.00 0.00
sammge 3 0.10 | 0.27 0.05 0.16 0.26 0.17 fail 0.18
sammge 5 0.12 | 0.42 0.07 0.12 0.48 0.36 fail 0.13
sammge 6 0.13 | 0.45 0.05 0.27 0.58 0.40 fail 0.13
sammge 7 0.18 | 0.69 0.06 0.13 0.58 0.23 fail 0.20
sammge 8 0.10 | 0.78 0.05 0.63 0.74 0.39 fail 0.19
sammge 9 0.10 | 0.71 0.07 0.45 0.69 0.65 fail 0.20
sammge 10 0.17 fail 0.01 0.01 fail 0.01 0.00 0.01
sammge 13 0.05 | 0.30 0.12 0.20 0.28 0.23 fail 0.23
sammge 14 0.12 | 0.29 0.11 0.17 0.35 0.23 fail 0.18
sammge 15 0.06 | 0.27 0.06 0.48 0.31 0.38 fail 0.25
sammge 16 0.05 | 0.47 0.11 0.26 0.46 0.31 fail 0.10
sammge 17 0.10 | 0.62 0.09 0.57 1.05 0.20 fail 0.17
sammge 18 0.08 | 0.37 0.11 0.46 0.45 0.50 fail 0.16
scarfasum 2 0.15 fail 0.04 0.15 1.51 0.15 0.12 0.10
scarfasum 3 0.13 1 0.29 0.07 0.15 0.37 fail fail 0.05
scarfbnum 1 0.08 | 6.27 0.39 0.57 6.42 1.01 fail 0.32
scarfbnum 2 0.10 | 6.01 0.44 0.43 6.09 7.36 fail 0.32
scarfbsum 1 0.17 fail fail 0.49 8.77 0.39 0.31 0.24
scarfbsum 2 0.18 fail 3.43 5.16 31.11 1.22 fail 0.66
threemge 7 0.08 - 0.06 fail - 0.14 0.13 0.05
threemge 8 0.07 - 0.06 fail - 0.12 0.14 0.05
threemge 11 0.12 - 0.05 fail - 0.82 fail 0.05
transmcp 1 0.03 fail 0.04 0.09 1.22 0.23 fail 0.05
transmcp 2 0.03 fail 0.01 0.00 fail 0.00 fail 0.00
transmcp 3 0.03 0.02 0.02 0.01 0.02 0.03 fail 0.02
transmep 4 0.03 | 0.11 0.02 0.01 0.10 0.04 fail 0.02
vonthmep 1 fail - fail fail - fail fail fail
vonthmge 1 0.08 fail 1.06 fail fail fail fail 17.14
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Table 4. Function and Jacobian Evaluations f(j)

Problem | st. NE/ QP- SEMI- SEMI-

Name pt MILES SQP | PATH | PROXI COMP COMP SMTH | SMTH
bert_oc 1 13(12) oAy | 43 — 211y | 2111y | 4(4)
bert_oc 2 || 21(13) Ay | ) ~ | 143(42) | 143(42) | 4(4)
bert_oc 3 fail Ay | ) — | a1y | a1(15) | 4(4)
bertsckas | 1 || 259(36) | fail | 27(6) | 138(37) | 151(44) | 251(42) fail | 113(27)
bertsekas 2 5(4) fail 5(b) | 83(31) | 126(40) 327(38) fail 7(7)
bertsekas | 3 || 12(11) | 9(8) | 12(12) | 21(20) 9(8) | 181(39) | 181(39) | 67(24)
billups 1 fail | fail | fail | 23(22) | 23(22) | 631(76) | 6903(345) fail
bratu 1 fail ~ | 48(26) | 48(25) - | 3164(538) fail | 48(26)
cafemge | 1 86) | 16(10) | 97y | 23(9) | 16(10) | 18(10) |  18(10) |  9(8)
cafemge | 2 6(5) | 15@8) | 6(6)| 17(7)| 15(8) 11(8) 11(8) | 6(6)
cammecp 1 4(3) - 4(4) | T7(23) - fail fail 4(4)
choi 1 54) | 5@4) | 56| 5@4) 5(4) 6(5) 6(5) |  5(5)
co2mge | 2 9(6) o | 1) ~ | e2015) | 63(16) | 7(6)
co2mge 6 6(5) - 7(7) fail - fail fail | 81(13)
colvdual | 1 43) | fail | 15(13) | 201(36) | 252(78) |  44(16) |  44(16) | 40(15)
colvdual | 2 4(3) | fail | 16(12) | 250(55) | 184(59) fail fail | 52(17)
colvalp 1 4B3) | fail | 10(7) | 77(16) | 178(54) | 46(16) |  46(16) | 37(14)
colvalp 2 43) | fail | 5(5) | 29(12) | 137(30) | 26(15) |  26(15) | 23(10)
dmemge 1 99(27) — | 34(18) fail - fail fail | 97(23)
dmemge | 2| 13(8) -~ 6(6) fail ~ | 3099(661) fail | 6(6)
chlkost | 1 6(5) | fail | 6(6) | 25(14) | 108(105) |  32(15) |  32015) |  6(6)
chlkost | 2 8(7) | 97(30) | 19(19) | 95(28) | 97(30) | 125(34) | 125(34) | 21(12)
chlkost | 3 || 16(11) | fail | 11(11) | 144(44) | 409(79) | 671(114) | 671(114) | 262(55)
finmge 2 5(4) ~ | 7(7) | 151(25) - fail fail | 60(13)
finmge 4 5(4) — | 8(8) | 135(28) - fail fail | 110(20)
freebert | 1 43) | fail | 5(5) | 138(37) | 151(44) | 266(46) fail | 6(6)
freebert | 3 43) | fail | 5(5) | 106(35) | 173(45) | 206(42) fail | 6(6)
freebert 4 fail fail | 27(6) | 138(37) | 151(44) 240(42) fail fail
freebert 5 fail fail 5(b) | 53(14) | 116(23) 49(14) 49(14) 5(5)
freebert 6 fail fail | 27(6) | 106(35) | 173(45) 200(40) fail fail
gemmep | 1 2(1) 20 | 2(1) - 2(1) 21) | 2(2)
gemmge 1 fail - fail 2(1) - 2(1) 2(1) 2(2)
gemmge 2 7(5) - | 18(7) 22(7) - 16(9) 16(9) 21(6)
gemmge | 3 6(5) ~| 66)| 60 - 10(8) 10(8) | 6(6)
gemmge 4 7(6) - 6(6) 7(6) - 8(7) 8(7) 6(6)
gemmge | 5 | 10(7) — | 26(21) | 25(11) 31(13) 31(13) | 13(7)
hanskoop | 1 6(4) | 15(10) | 13(7) | 42(16) | 15(10) fail fail | 110(36)
hanskoop 2 2(1) 2(1) 14(6) 2(1) 2(1) fail fail 2(1)
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Table 4. Function and Jacobian Evaluations (continued)

Problem st. NE/ QP- | SEMI-
Name pt MILES SQP | PATH | PROXI | COMP | COMP
hanskoop 3 fail | 18(11) | 23(14) | 44(13) 18(11) fail
hanskoop 4 2(1) 2(1) 14(6) 2(1) 2(1) fail
hanskoop 5 6(5) fail | 19(11) | 68(15) | 27(11) 20(8)
hanskoop 7 7(5) fail | 11(6) | 37(15) | 45(13) fail
hanskoop 9 fail | 23(13) | 16(13) | 187(41) | 23(13) | 20(15)
hansmcp 1 6(4) fail | 45(18) 18(9) fail | 24(13)
hansmge 1 43) | 118) | 12(8) | 37(15) | 11(8) | 47(17)
harkmcp 4 5(4) | 29(13) | 13(6) | 23(14) | 27(14) fail
harmge 1 || 284(60) fail | 11(7) | 222(38) | 132(57) | 672(75)
harmge 2 5(4) fail 5(5) 5(4) 5(4) 3(2)
harmge 3 5(4) fail 5(5) 5(4) 5(4) 3(2)
harmge 4 8(5) fail 8(6) 5(4) 5(4) 3(2)
harmge 5 8(5) fail 8(6) 8(5) 8(5) 3(2)
harmge 6 fail fail | 13(8) fail | 379(78) 3(2)
hydroc20 1 fail 10(8) | 11(9) 10(8) 10(8) 12(9)
josephy 1 fail fail 7(7) | 37(14) 13(7) 10(7)
josephy 2 fail fail | 15(11) 15(7) 15(7) 12(7)
josephy 4 fail fail 4(4) 5(4) 5(4) 6(5)
josephy 6 fail 4(3) fail 12(6) 12(6) 13(7)
kojshin 1 fail fail | 6(6) | 18(9) | 16(7) | 22(10)
kojshin 3 11010 fail | 17(17) | 97(22) | 35(10) | 92(23)
kormcp 1 4(3) 4(3) 4(4) 4(3) 4(3) 4(3)
mrbhmcep 1 7(6) - 7(7) | 64(15) - | 26(13)
nsmege 1| s2(17) —| 108) | 35(14) 23(12)
obstacle 1| 50(14) ~ | 111 | 11010) ~ | 15(14)
obstacle 2 fail — | 12(12) | 12(11) - | 17(14)
obstacle 3 fail — | 17(11) | 21(13) - | 14(13)
obstacle 4 2(1) ~ | 12011) | 23(16) ~ | 17(16)
obstacle 5 fail - 7(7) 8(6) - 8(7)
obstacle 6 fail - | 16(10) 16(9) - | 20(13)
obstacle 7 fail - | 12(10) 17(9) - 17(12)
obstacle 8 fail — | 17(11) 9(6) - 10(7)
opt_cont127 1 8(3) - 6(6) 6(5) - 27(12)
opt_cont255 1 fail - 6(6) 6(5) - | 31(14)
opt_cont31 1 2(1) - 6(6) 5(4) - 11(9)
opt_cont511 1 fail - 6(6) 6(5) - | 73(20)
pgvon105 1 fail fail | 64(16) | 403(75) fail fail
pgvon105 2 || 33(14) | 199(39) | 27(10) | 135(23) | 213(30) fail
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Problem st. NE/ QP- SEMI- | SEMI-

Name pt MILES SQP PATH PROXI | COMP COMP | SMTH SMTH
pgvonl05 | 3 fail | 153(32) | 63(14) | 3353(338) | 322(40) fail | fail fail
pgvon105 4 fail fail fail fail fail 352(42) fail fail
pgvon106 1 fail fail | 772(101) 739(88) fail fail fail | 6428(482)
pgvon106 2 fail fail 48(36) fail fail fail fail 109(37)
pgvon106 3 fail fail 39(20) fail fail fail fail 233(49)
pgvon106 4 fail fail fail 86(28) fail 412(65) fail fail
pgvon106 51| 47(23) - fail fail fail fail fail fail
pgvon106 6 fail - fail fail fail fail fail 58(27)
pies 1 3(2) fail | 13(13) | 73(23) | 54(49) | 22(13) | 2213) | 41(14)
sammge 1 1(0) fail 1(1) 1(1) fail 1(1) 1(1) 1(1)
sammge 3 4(3) 4(3) 6(4) 46(7) | 4(3) 41(8) fail | 66(10)
sammge 50| 14(6) | 11(5) 11(6) 17(8) | 11(5) | s4(14) fail | 33(11)
sammge 6 43y | 11(5) 9(5) 52(19) | 11(5) | 103(17) fail 25(9)
sammge 7 6(4) | 16(7) 5(5) 23(10) | 16(7) 54(11) fail | 47(18)
sammge 8 4(3) 9(5) 9(5) | 146(38) |  9(5) | 114(16) fail | 40(11)
sammge 9 17(7) 13(7) 5(5) 139(26) 13(7) 168(29) fail 50(18)
sammge 10 1(0) fail 1(1) 1(1) fail 1(1) 1(1) 1(1)
sammge | 13| 4(3) |  4(3) 17(6) | 47(13) | 43) | 61(14) fail | 51(15)
sammge | 14| 4(3) |  4(3) 166) | 50(13) | 4(3) | 74(11) fail | 50(14)
sammge | 15 4(3) 4(3) 5(5) 83(23) | 4(3) | 122(20) fail | 76(15)
sammge | 16 || 4(3) |  7(5) 88) | 40(15) | 7(5) |  80(12) fail 14(7)
sammge | 17 || 4(3) | 24(7) 6(6) 75(22) | 43(7) 61(11) fail | 37(10)
sammge | 18| 4(3) |  7(5) $8) | 131(26) | 7(5) | 148(22) | fail | 33(12)
scarfasum 2 12(7) fail 5(5) 25(9) | 73(26) 23(12) | 23(12) 23(6)
scarfasum 3 5(4) 9(6) 8(6) 34(13) 9(6) fail fail 9(6)
scarfbnum | 1 5(1) | 70(20) | 24(14) | 164(46) | 76(21) | 241(51) |  fail | 71(20)
scarfbnum | 2 || 5(4) | 97(22) | 25(15) | 165(35) | 58(19) | 1497(341) |  fail |  95(24)
scarfbsum 1 4(3) fail | 462(57) 60(25) | 26(22) 37(18) | 37(18) 24(11)
scarfbsum | 2| 4(3) fail | 162(21) | 1062(117) | 157(83) | 276(43) |  fail |  103(24)
threemge 7 6(5) - 6(6) fail - 32(12) | 32(12) 6(6)
threemge 8 6(5) - 6(6) fail 30(12) | 30(12) 6(6)
threemge 1 6(5) - 6(6) fail - 215(26) fail 6(6)
transmcp 1 2(1) fail 12(12) 92(26) | 69(67) | 193(105) fail 24(15)
transmep 2 1(0) fail 1(1) 1(1) fail 1(1) fail 1(1)
transmep 3 2(1) 2(1) 3(3) 3(2) 2(1) 15(8) fail 4(3)
transmep 4 6(5) 6(5) 3(3) 3(2) 6(5) 43(10) fail 5(5)
two3mep 1 6(5) 16(8) 6(6) 16(8) 16(8) 13(8) 13(8) 13(8)
two3mcp 2 5(4) 7(4) 5(5) 7(4) 7(4) 7(5) 7(5) 5(4)
unstmge 1| 108) | 10(8)| 16(15) 11(8) | 10(8) 11(9) | 11(9) 8(7)
vonthmcep 1 fail - fail fail - fail fail fail
vonthmge 1 18(14) fail 34(22) fail fail fail fail | 730(278)
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code to the test set. Moreover, even if such tuning is successful, the resulting
code will be good at solving the types of problems that are represented in the
library, namely, the problems that are of interest to the user community. The
inclusion of problems with known difficulties allows codes to be compared by how
well they solve different classes of problems, thus allowing users to more accurately
choose codes that meet their needs. Finally, by categorizing problems with different
computational difficulties, the library can be used to highlight the areas where
research energies most need to be directed.

Our testing indicates superior performance by the PATH, SMOOTH, and PROXI
algorithms. However, as the codes continue to mature, it is possible that their
relative performance will change. It was not our intention to declare a winner, but
rather to “clarify the rules” so that code developers will focus on the right issues
when developing algorithms. To a large extent, we have accomplished this with our
testing environment.

It is unfortunate that the scope of our testing was so limited. There are numerous
other algorithms that we were not able to test. This is primarily due to the fact
that these algorithms do not have GAMS interfaces. It is our hope that as the
CPLIB interface becomes more widely known, other code developers will hook up
their solvers to GAMS. This will allow their algorithms to be easily compared with
other codes using our testing environment.

Lastly, we wish to emphasize that the test library is continually being expanded.
In particular, we are always eager to add challenging new real world models to the
library. To this end, we have begun to augment the MCPLIB by adding new models
that have recently come to our attention. The 10 models listed in Table 5 have been
used in various disciplines to answer questions that give rise to complementarity
problems. The first 6 are economic models, the next two arise from applications in
traffic equilibrium and multi-rigid-body contact problems, the final two correspond
to complementarity problems for which all solutions are required. The numbers
of solutions for the last two problems are known to be odd, the number listed
below 1s a lower bound. These problems appear to be more difficult than most of
the problems solved in this paper. Certainly, some are much larger, others have
singularities either at solutions or starting points. Most of these problems do not
have underlying monotonicity.

The results that we present in Tables 6 and 7 for these models are somewhat
different to the results above and are motivated more by the models themselves.
For the games and tinloi models, it is important to find all solutions of the model,
and so after a fixed number of runs from a variety of starting points, we report the
number of distinct solutions found for these models in Table 6.

For the remaining problems, we just report one statistic in Table 7 for each model.
If every problem was solved, we report the total resources used to solve the complete
model, otherwise we report an error using a letter signify some sort of failure “F”,
memory error “M” | time limit exceeded “T” or iteration limit exceeded “I”. Only
the first error is listed per problem, the numbers in parentheses are the number of
problems that failed to solve.
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Table 5. New Models

| Model | Type | n | nnz | density | solves | other |
shubik MCP 33 207 | 19.01% 48 S
jmu MCP 2253 | 10123 | 0.20% 1
asean9a NE 10199 | 72320 | 0.07% 1
eppa MPSGE | 1269 | 10130 | 0.63% 8
uruguay MPSGE | 2281 | 90206 | 1.73% 2
hanson NE 487 | 3868 | 1.63% 2 S
trafelas MCP 2904 | 15000 | 0.18% 2
lincont LCP 419 | 23626 | 13.46% 1
games NCP 16 256 | 60.94% 25 5
tinloi LCP 146 | 5694 | 26.71% 64 3

Table 6. Distinct Solutions Found

| Model | MILES | PATH | PROXI | S/COMP | S/SMTH | SMOOTH |
games 3 5 2 3 3 4
tinloi 2 3 1 1 1 2

Table 7. Summary for New Models

| Model | MILES | PATH | PROXI | S/COMP | S/SMTH | SMOOTH |
shubik I(13) F(9) F(25) 1(34) 1(42) I(15)

jmu I 110.81 F F T 214.32

asean9a, T 62.08 M 92.85 94.3 91.62

eppa 249.61 203.79 M T(7) F(7) 239.73

uruguay I(1) | 2760.17 M M | 68161.10 4519.53

hanson F(1) 39.36 F(1) F(1) I(1) 4.94

trafelas T(2) 150.55 F(1) T(2) T(2) 346.23

lincont 9.99 10.76 F F T 718.27
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It is our intention to add these models and newer models that are brought to our
attention to MCPLIB. In this way we hope that the problem library will continue
to serve as a guide for code developers so that they will direct their energies into
areas that will best serve the users.
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