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Abstract

Residual-free bubbles are derived for the Timoshenko beam problem. Eliminat-
ing these bubbles the resulting formulation is form-identical to using the following
tricks to the standard variational formulation: i) one-point reduced integration on the
shear energy term; ii) replace its coefficient 1/e? by 1/(€* + (h%/12)) in each element;
iii) modify consistently the right-hand-side. This final formulation is ‘legally’ obtained
in that the Galerkin method enriched with residual-free bubbles is developed using full
integration throughout. Furthermore this method is nodally exact by construction.
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1. INTRODUCTION

The deflection of a beam taking into account bending and shear deformations is
described by the Timoshenko model. Standard Galerkin finite element method using
equal-order piecewise linear approximations for the unknown dependent variables rota-
tion (#) and displacement (w) yields “locking” and spurious oscilations for the shear
forces. Selective reduced integration has been suggested to cure some of these patholo-
gies and has been justified resorting to an equivalent mixed variational formulation
[1,8].

In this work we enrich the standard piecewise linears with residual-free bubbles [2-
4] and show that the Galerkin method without tricks (using full integration) produces
selective reduced integration with a coefficient for the shear term that is form-identical
to the “residual bending flexibility” coefficient suggested by MacNeal [7]. The right-
hand-side load terms get some correction as well. The final formulation is nodally exact,

a result which has been achieved before with an unrelated idea [6].

2. RESIDUAL FREE BUBBLE FORMULATION

The Timoshenko beam model is governed by the following differential equations

(after non-dimensionalization — e.g., see [1,6]):

1
—0" — S (w' —0) = in Q
€
(1)
——Z(w” —0)=7f in Q
where prime denotes differentiation with respect to z € € = (0,1), # and w are the

rotation and displacement variables, f is the load and € is a non-dimensional parameter

proportional to the beam thickness.
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To (1) we append the following clamped boundary conditions (other boundary con-

ditions may be used without major changes in what follows):
(2)

The variational formulation corresponding to (1)-(2) is given by: Find {0,w} €
H}(2)? such that

(0,0) + 2w — 6,0 — )= (fro) b0} € HI(Q)P 3)

€

where H{ (Q) is the Hilbert space of functions with square-integrable value and derivative

in Q satisfying (2) and we use the notation (f,g) = [, fg d .

Consider a partition of € into non-overlapping elements in the usual way. Then the

exact solution of our problem can be decomposed into:

6 =61 +06
(4)

W = wi + wp

where 6; and w; are spanned by the standard continuous piecewise linears of finite ele-
ment methods, and 6, and wy are assumed to satisfy the following differential equations

in each element K:

1 1
0~y wh —60) = —(— 8 — 5w} — 1)) .
)
1 1
(0 ) = —(— (w —6) ~ 1)

and subjected to the boundary conditions:

0p =wp, =0 on 0K . (6)
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Equations (5) can be rewritten as (note that 6 = w{ = 0 in K):
4 6w = 6,
6, —wy = —6) +€f.
From (7);
Oy — wj = wy — 61 + €6}
and combining with (7)2 we get

"—f K. (8)

Integrating three times (with respect to the local variable in the element, & €
0,hx],hx = xig1 — i, § = x — x;) and assuming piecewise constant load f, and
for notation’s sake dropping the subscripts for b and f (nowhere we need to assume
that hy is constant in what follows) we get:

£ £

0y(€&) = gf tag+ 26+ 3. 9)

Applying the boundary conditions 6,(0) = 6,(h) = 0 above gives:

0(E) = SA(E — )t er (6~ ). (10)
Using this expression into the first equation of (7) after one integration we get:
£ c 4 2

C1 2
— —£%(3h — 2 .
56 §) +eu
Applying the boundary conditions w,(0) = wy(h) = 0 in (11) we get expressions for the
remaining constants ¢; and ¢4 and the expressions for the residual-free bubble functions

are then given by:
‘ h
e = £ { &6 -1+ -0}

1 &(E—h) {el(h wl(h)—’wl(o)} 7

2 4 k2
€+ 13 2
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o€ =€ (1= 5 ) 010+ S0+ £un(0) = (1)
e R R e R A S

If we take the test functions ¢ = t; and v = vy, where 1 and v, are spanned by
continuous piecewise linears, then using decomposition (4) the variational formulation

(3) can be rewritten as
! ! 1 ! ! 1 ! !
(61,91) + 6—2(w1 — 81,0 — 1) — (fo1) + E—Q(wb — Oy, vy — 1) =0 (14)

where, by integration-by-parts, we used that:
(6,00 = SOt = 3 (B0 o — (B0, 0] = 0.
K K
Note that (14) consists of the Galerkin method for equal-order piecewise linear
approximations for 6 and w (without tricks, using full integration) plus a “perturbation
term” that we need to compute based on the bubble functions given by (12) and (13).

First by (12) and (13) we compute:

wh— = 61(0) + Su(h) — Br(0)) - L)
2 (15)
€ h wiy(h) —wy(0) 9 h
“arE - e ()
Note also that
wp — gy = 2l (1 - %> 0(0)~ (). (16)
Thus summing (15) to (16)
, , o h €2 h wy(h) — wq(0)
w1—91+wb—96—6f<§—§>—@[1(2)_ A (17)



L.P. Franca and A. Russo Preprint, July 1995 9

Therefore, using (17), the variational formulation given by (14) reduces to

1 UJl(h[() - UJl(O) h[(
! ! !
o+ g (P a )
€2 + X K

K

- (18)

= (fo0) + ) fr(€= 5500 = i)k
K

where we reintroduced the subscripts for & and the piecewise constant load f. This can

also be rewritten as

(61 0+ 30— (wh = RO — ) = (Foon)+ 2 Fel€— "2 0 — )i (19)
12 K

where R stands for a reduced integration operator.

Formulation (19) was derwed using full integration throughout and by construction
its solution is nodally exact. The final form is identical to applying the following tricks

to the standard variational formulation:
i) Use one-point reduced integration on the shear energy term;
ii) Replace its coefficient 1/€? by 1/(e* + (h3-/12)) in each element;
iii) Correct the right-hand-side as in equation (19) for piecewise-constant loads.

To emerge with these collection of “tricks” requires ingenuity and for the first two
tricks different arguments have been given before by several authors (see references in
[5,7,9]). We wish to point out that the residual-free bubbles point-of-view provides us
with a systematic approach to construct discretization procedures that may shed some

light on existing schemes and possibly improve them.
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