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ABSTRACT

In a previous report (cf. Dean[6]), a method of deriving statistical moment information was devel-
oped using a Hilbert space version of It6’s formula. This approach was used to develop a system of
partial differential equations in which the first and second moments of the concentration distribution
appear as independent variables. It was shown there that the system of moment equations appearing
in Graham and McLaughlin[8] can be derived in this manner. The present report expands on some
of the material presented in Dean[5] and provides a method of determining the statistical moments
of a contaminant plume from the usual spatial moment formulations. Specifically, the Lagrangian
concept of computing along the particle path of a fluid particle is used to develop a transformation,
Equation[ 9], that transforms a function g(#) € L'(R?) defined on all of ®¢, an Eulerian concept, to a
function g(XT(t, w; To,t0)), defined along the fluid particle trajectory, XT(t, w; &o, to), a Lagrangian
concept. The transformation is then used to convert the 0, 1 and 2 Eulerian spatial moments to
their Lagrangian counterparts.

1 Particle Concentration Field

Consider a fluid particle with mass given by my,. Suppose that the particle begins its journey at
the spatial point Zy at time tq.

Porosity, n, represents the portion of the total volume available to hold fluid. The rest is solid
material. So, if we have a total volume of V', the concentration, C, is given by

_ Myp
C= 1%

provided the total volume is available to hold the fluid. But, since only a portion of the total volume
is available to hold fluid and this portion is given by nV, the concentration is given by

_Myp
nV
For simplicity, we assume that V = 1 and that the particle starts its journey at spatial point Zo at
time tg. Then, the concentration field associated with the fluid particle can be represented as

Cp(@, t,w) = %5 (33’ — Xt w; a':’o,to)) 7e R 1)
where X:T(t, w; To,to)! represents the position of the fluid particle at time ¢ assuming that it started
at ¥y at time to. The d-function picks the & € ¢ that corresponds to the position of the particle’s
trajectory at time ¢, given that it started at Zp at time t9. (% — Xr(t,w;Zo,%0)) is an example
of a generalized random field or generalized random process. By fixing t and w, the fluid particle
trajectory, X1 (t,w; Zo, to) represents a point in R¢, By fixing ¢ and letting w € 0, then X7 (t,w; Zo, o)
represents a distribution of points in ®¢. Hence, from Equation| 1] the expected concentration is
given by

E[Cy)(&,t; Fo,to)] = / Crop(Rir t; o, to) A
%n
= 12 55 — Xp)p(Xp, t; Fo, to)dXr 2)
R n
Mfp

= Tp(fatai‘b)tO)

1In order to simplify notation, this will often be written as )_(‘T(t; Zo,to)



where p(XT, t; Zo, to) is the conditional probability density of the position of the fluid particle given
that it started at position #y at time to. This type of representation appears frequently in the
literature (for axample, Dagan and Neuman[3]). This equation says that the expected concentration
is determined by the probability density function of the trajectory.

Similarly, we can write

B(Crp@ tido,to)] = B[™226 (7= Xl o, t0))|

= %E [6 (;E'— XT(t;fO;tO))]

Comparing Equation| 2] and Equation[ 3] it follows that
E [5 (7 - Xr(t;7o0.t0))| = p(@ t:7o,to)

This equation can be used to theoretically determine a probability that the fluid particle will be in
a neighborhood of a specified & € R? at time ¢, given that it started at & at time to. For example,
if B € B, B is compact, such that & € B, then the probability that the trajectory XT(t; %o, 1) is in
a B neighborhood of the point # given that it started at &y at tq is given by

| Bl - Rrwdo )] a5 = [ p@6don) dz
B B

P(B,t;o,t0) (4)

= P{XT(t;fo,to) € B}

Figure 1 is intended to represent the fluid particle concentration field. The solid line represents the
particle’s Expected Path and the periodically placed curves represent the time dependent probability
density functions of the particle’s trajectory.

The Fubini theorem, Burrill[2], states that if (Q1, F1, p1) and (2, Fa, p2) are o-finite measure spaces
and if g is a (u1 X pg2)-measurable function defined on ; x 25 which is integrable, then

/ g d(p x p2) = // g dpidps = // g dpadp
Q1 xXQs Q1 XQ2 Q1 XQ2

It is necessary to show that a similar result holds for the generalized stochastic process
8(& — X (t,w; 7o, to))
It has been shown that
E[6(Z — Xr(t,w; Zo, t0))] = p(Z, t; 7o, o)

where p(Z, t; T, to) is the conditional density of the fluid particle given that it started at Zo at time
to. Let (Q,F, P) be a complete probability space and let (%¢, B, d¥) be the Lebesque measure space
for R¢. Let B € B be a compact set, then the probability that the trajectory XT(t,w; Zo,t0) € B at
time ¢ given that it started at Zp at time #g is given by

/E[é(f—XT(t,w;E),tO))] dfz/ /5(5—)2T(t,w;fo,to)) dPdi = P{Kr (1,50, t0) € B
B B JQ

Now, let A = {w € Q : X7 (t,w; T, o) € B}. In Dean[5] it is shown that
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//5(5:’—X‘T(t,w;fo,t0)) dzdP = P(A) (5)

Hence, it follows that

/E[a(f—X‘T(t,w;fo,to))] d7 //é(f—XT(t,w;fo,to)) dPd
B BJQ

(6)
- / / 5(F — Rr(t,w; Fo,to)) dEFdP
QJB
The concentration field of the fluid particle is given by
m 2 .
Cfp(fa taw) = %5 (f—XT(t,w;.’L'o,to)) (7)

where my, is the mass of the fluid particle, n is the porosity and XT(t,w;fo,to) is a stochastic
process describing the path of the fluid particle. Each w € 2 yields a sample trajectory of the fluid
particle starting at Zo at time to. Let t; > tg, then the set

{XT(tl,w) cw € Q and Xp(to,w) = fo}
represents the concentration field at time ¢;.

Let g : ®¢ — R! such that

/ 9@)| dF <0 = g(@) € L' (RY)
%d



and let ¢(F) € C5°(R?) be a test function. Since L!-convergence implies convergence in measure,
a result due to F. Reisz states that any sequence of functions which converges in L' to g(Z) has a
subsequence that converges a.e. to g(¥), Hewitt and Stromberg[9], Theorem 11.26. Since C§°(R?)
is dense in L1(R?), 3 {¢n} C C$°(R?) such that

- Ll
on(Z) = g(2)
This is also true for L?, 1 < p < oo, Adams[1], Theorem 2.19. Hence, it is assumed that a

subsequence exists for which lim,, e ¢n, (Z) = g(&) for almost all & € R¢. Now, for X1 (t; o, to) €
%d

lim 8(Z — Xr(t; Bo,t0))fn, (B) dE = lim ¢, (X1 (t; %o, to))
nE—>00 Rd nE—>00
(8)
= g(XT(t; .’fo,t())) a.a. XT(t;f(),t(])
So, by defining
§(& — Xr(t; %o, t0))g(Z) dZ = lim 8(& — X (t; To, to) ) bn, (F) dE
Rd NE—00 Jypd
it follows that except on a set C' C R¢ of measure zero, the statement
(% — Xr(t; Fo,t0))9(F) d& = g(Xr(t; Zo, to)) 9)

Rd

holds.

2 Moment Calculations

In the computations that follow, it is assumed that the concentration field of the fluid particle at time
T is contained in a compact set B € B. The existence of a probability space (Q2, F, P) is assumed,
and the behavior of the fluid particle is described by the stochastic process XT(t,w; Zo,t0). Fixing
w € ) generates a sample path of the fluid particle in time. This allows the study of the trajectories
of the fluid particle in continuous time. These trajectories, taken together, can be interpreted as a
plume described by several fluid particles. The sample paths can be simulated by solving a stochastic

differential equation as described in Dean[5].

2.1 Total Mass

Since we are dealing with the concentration plume of a single particle, the mass at any time ¢ is
given by mygp. In general, the mass is given by the zero'? spatial moment

M(t) = E[M(t)] = E [ / nCip (@, t,w) da‘:’] (10)
§Rd
Let A= {w €N: XT(t,w;fo,to) € B} and let g(Z) = xB(Z), then except on a set of measure zero

1 if XT(t; Zo,t0) € B

0 otherwise =xa(w) (11)

) 8(Z — Xy (t; 2o, t0))x5(%) dF = x5(Xr(t; Zo, t)) = {
®

From Equation][ 8], Equation[ 7] and Equation[ 5],
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/ (/ nCyp(Z,t,w) d;E') dP
Q \Jxd

[ L mssd@ = Xt o, to) s ) dzap

= mfp/ / 8(& — Xr(t,w; &, to)) dZdP
QJ/B
= myp P(A)
But, since all points of the concentration field are in the set B at time ¢, A = 2 and
M(t) = mysp P(A) = msp P(Q) = myp (12)

2.2 Centroid

The centroid of the concentration field of the fluid particle at time ¢ is the vector given by
= 1 U "
R(t)=E [—/ nZCyp(Z,t,w) d:c]
M Jqa
for which the it* compoment is given by
1 " " o .
R;(t)=E [—/ nZ;Cyp(Z,t,w) da:] i=1,---,d
M Jqa

Since the concentration field of the fluid particle at time ¢ is assumed to be contained in the compact
set B € B, let g(%) = z;x5(F) € L' (R?). Note that

/ niCyp(Z,t,w) dZ = / nZCyp(Z,t,w) df—}—/ nZCyp(L,t,w) di
Rd R\ (BNC) BNC

But, since B N C' has measure zero, the second integral on the RHS is zero, so that
/ nECyp(Z,t,w) df = / nZCyp(Z,t,w) di
Rd R4\(BNC)

The i*" component of the centroid is then given by

Ri(t) = / Lt) / nd;Cyp(Z, t,w) dZdP
Q Rd

M(
= / L/ nZ;Crp(Z, t,w) dZdP
o M(t) Jpa\(Broy T ®

// 5(F — Ron(t, w; o, to))Fixn (&) dFdP
o Jra\(BnC)

/ . §(7 — XT(taw;fo,to))fiXB(f)Xéred\(Bnc) (£) didP
Q /%
However, using the properties of the indicator function, it follows that

Xwi\(Bnc) - XB = (1—=xBnC) XB



XB — XB ' XB ' XC
= xB-(1—xc)

= XB\C

and the expression for the i** component of the centroid becomes, using Equation| 9],

Ri(t)

/ 5(F — Kr(t,w; Fo, o)) Fixano (&) didP
Q JRd

/ Xr.xp\c(Xr) dP
Q

Furthermore, if g(%) is a Borel function from R? into R¢, such that

Y =g(X)
and the it component is given by
Yi = §:(X)

and F'g (%) is the probability distribution function for X, then

/ﬁ-dp:/ Gi(X)dFy i=1,---,d
Q Rd

Using these comments, it follows that

Ri (t) X:n dF)-(‘T

B\C

Xy, dFyg, + Xy, dFg,
B\C BNC

= / Xr, dFg
B T

Xr, dFyg _~ since Xr(t,w; o, t0) € B Vw €N
md

- E [)?T] (13)

2.3 Second Moment

The second spatial moment characterizes the spread around the centroid. It is a matrix with com-
ponents

]. — —
M@ Sy

Then, as before, with ¢g(%) = (&; — E[)_(’T])(:i:'J - E[X’TJ]) x 8 (%) and assuming the concentration field
of the fluid particle at time ¢ is contained in the compact set B € B, the second spatial moment is

S50 = B |37 L, 0@~ BIRn)(@ - BLELDC5(2,t0) dF



1

= E
L/ R

= E
L/ R

M)

/ n(%; — B[X1,))(@; — B[X1,))C1,p (@, t,w) df]
R4\ (BNC)

= E / (% — Xr(t,w; Zo, t0))(#i — E[X7.))(#; — E[X1,)x5 () df]
R4\ (BNC)

8(Z — Xr(t,w; Fo, o)) (& — E[X1,))(Z; — E[X1;])X0a\(8n0) XB(Z) df]

8(& — Xr(t,w; Fo, t0)) (& — BIX5.])(& — E[Xp;])xp\c df]

From Equation[ 14], the ij'* component of the displacement covariance matrix is given by

Si;(t)

|| 8@ - Ratt,ws 0, t0))(@ - BIZw D@, — B2, Do (@) dadP
Q JR

= | (X~ B0 (¥, — B ) (¥r) dP

| (®n —B{En D) (Er, — BLEn)xme(Er) Py,

+ [ (o~ BLX0)(Er, - BEr ) xanc(Er) dF,
R

= | (- BEn)(Er, ~ B ] (Fr) dF,

since / (Xr, — E[X1,))(X1, — E[Xr,))x80c(Xr) dFg,
?Rd

/ (£r, - B[Zr])(%r, - B[r)) dFyg,  since Xr(t,wsdo,to) € B Vw € 0
%d

= B|(¥r, - B[¥5))(¥r, - B[X1])]

If # and ¥ represent two points on the particle path, then

pis(@, ) = B[ (Vi) - BVi@)) (@) - BV @) |

Using the kinematic relationship

- =

t
Rt Foy ) = / 7(Xr(t))dt
0

it follows that E[Xr(t; Zo, to)] = f(f E[V (X7 (t'))]dt'. The convective displacement is given by

Xt @0, to) = Xp(t; @, to) — B[X7(t; &, to)]

—

t
- / (V(Er () - BT (Xr(t))]) a

So, the displacement covariance is given by

And, by differentiation,

t ot
Si;(t) :/0 /0 Pij (XT(t'),XT(t")) dt'dt"

(14)

=0

(15)
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In Dean and Russell[7], a Lagrangian numerical framework is proposed for computing the components
of the tensor D. The physical domain is subdivided into computational grid blocks, and as time #'
increases from 0 to ¢, the particle moves from its original position at time ¢ = 0 to its position at
time ¢, in block (m). As it moves, it traverses different grid blocks on its way to block (m). Figure
2 is an illustration of a particle traversing its way through the computational grid.

Track Of Particle Through A Computational Grid

@ A \(m)

Figure 2

The numerical approximation of the component D;; is computed using the stochastic properties of
the domain in the grid blocks traversed by the fluid particle and the characteristics of the velocity
field in those grid blocks. It is given by

m—1
- K(k+1) @ 7/ (k+1) K(mp |7 (m)

D, kZ:O E [(K E [7+0)] Atk+1)i (RE [V ])J]
where K = (K — E[K])E[K]~!. The indexes in parentheses denote the computational block number,
K denotes the hydraulic conductivity matrix on the block, E[V] is the expected velocity on the block
and At is the time the particle spends in the block during its traverse.

2.4 L? Approach

Let {¢n} C C5°(R?) be a sequence of test functions. When the space C§°(R?) is equipped with a
special topology, C§°((R?) becomes the space of test functions, denoted D(R?). Denote by < -,- >
the duality pairing on the space (D(R%))" x D(R?), where (D(R4))" is the dual of D(R?), so that in
the scalar sense

<> (DRY) x DRY) — R

The intention here is to define something similar in the Hilbert space sense. It is to introduce a
special generalized random process which according to Hida[10], ” ...is understood to be a family
{X (&, w) : £ € E} of random variables on a probability space (2, B, P) with parameter set a certain
function space E ...such that for almost all w, X (§,w) is a continuous linear functional in £ ...”.

Since the type of measure space that is considered is one in which the total measure is unity, the
following results are available:



e [%-convergence = LP-convergence, if ¢ > p > 1.
e [P-convergence = convergence in probability.

e Convergence in probability = the existence of an almost everywhere convergent subsequence.

Let L2(Q, F, P) represent the Hilbert space of random variables with inner product given by
(X,Y) =E[|XY]]

and mean squared norm given by

Xl = (B [IX12]) —(/ |X|2dP) < o0

Since P(2) = 1, it follows that if 1 < p < ¢ and X € L4(P), then by Holder’s inequality

/Q|X(w)|P dp < {/Q(lX(w)|P)% dP}% {/911% dp}l_%

Hence,

IX@laer = ([ 16 |de)15(/9 |X<w)|4dP)%=||X<w)||Lq<p> (16)

Therefore, X (w) € LP(Q2) and
L(P) C LP(P)

For the present application, let ¢ = 2 and p = 1.

Since D(R?) is dense in L?(R¢), which is complete, assume that for g € L?(R¢)

9(Z) = (m?) lim ¢ () (17)

n—oo

for {¢,,} C D(RY).
Define 6(¢)(t,w) such that

6W)(t,w) = | 8@ = Xrlt,wi @0, t)$(@) d& = v (Xr(t,w; o, to))

Rd

where ¢(Z) € D(R?). 8(ZF—Xr(t,w; Zo,to)) then represents a generalized random. field or a generalized
random process. By fixing @ € 2, the sample path

5)(t,0) = | 8(F— Xalt, @38, 000 (@) di = v (Xr(t, @550, t0))

Rd

is obtained. By fixing f € [0, 00), yields the random variable

<w,b>= 6@)(Ee) = | 0@ - Xrlhwido,t0)v@ di =y (Xrlwidow)  (19)

where w is identified with 6(Z — X1 (£, w; %o, to)) so that w can be considered an element of S'. This
defines that action of w on .



The following will require, (see Burrill[2]),

Fatou’s lemma: If {g,} is a sequence of nonnegative measurable functions and if (a.e.)liminf, g, =
g, then

/gdugliminf/g,,dp O
E v E

Fix t = . In order to simplify notation, let S = D(R?) and S’ = (D(R?))". Let B(S') represent the
Borel subsets of S'.

Bochner-Minlos Theorem: Let C(§) be a characteristic functional on S. Then there exists a
unique probability measure p on (S', B(S')) such that

ce) = / S duw) O

Expectation with respect to the probability measure u is denoted by E,. Let

C© = exp [i <m.& > = lllans (19)
where m is a continuous linear functional on S,
m:S — R
The characteristic functional [ 19] determines the measure space (S’,B(S), u) on which there is a

system of Gaussian random variables {< w, £ >: £ € §} with mean < m, & > and variance ||£||%2(§Rd).

The L2-completion of the space (S, B(S), u) is denoted L?(p). Since {< w, & >: € € S} is a Gaussian
system, the even order moments are given by

n 2n)! n
< w,6> - <m,€ > dulw) = Py =12, (20)
S’ 2np/!

From Equation[ 17], {¢,} — g in L2(R?) where {¢,} C D(R?), and from Equation[ 20] with n = 1,
[<w=m,¢n—6m > du = | |<w,dn—dm > <m,dn—dm > du
s s
= |l¢n — mlli2pay =0 as myn—0
Since < w —m, ¢y, — Oy >= (K W, Py, > — <M, Py, >) — (K W, Oy, > — < M, Py, >), it follows that

{< w,n > — < m,dn >}, is a Cauchy sequence in (S',B(S'), u). Let hp(w) =< w,dn > — <
m, ¢, >, then

1
Mo |ha() = hm(w)] > €} < 5 /S |n (@) = b ()| du
So, {hn(w)} is a Cauchy sequence in measure. Hence, there is a subsequence {hy, } such that

lim h,, (W) =<w,h> ae wedS

k—o0
= lim |, (@) = |[<w,h > ae weS
k—o0

10



By Fatou’s lemma,

|<w,h> dp < liminf/ |, (w)]?
S’ N =0 [or
= sup inf |h W)[* dp (21)
Nk u>nk

Assuming that [, |hn, ()> dp < 00, V ng, and given € > 0, 3 v such that

[ V@) = hap@)P < e >0
SI

Using the inequality

e @) = i () = P (@) + Py ()

IA

4 | By, (@) = g ()7 + 4 [y ()
it follows that
|y (@)|* dp < de+4 [ |hy(w)|? dp=K <oo for ny > vg
s S
Since K is an upper bound for these integrals,
sup [ |hn, (W)|* dp < oo = sup inf |, (@) dp < 00
ng JS’ nE Y21k Jgr

Equation[ 21] then gives

/ |< w,h > du < oo (22)
sl

so that |< w,h >|” is integrable. The sequence {hy(w)} is a Cauchy sequence in mean square, and
for each n

Jim |y () = b, W) = |hp(w)— <w,h > ae wed
again by Fatou’s lemma,

(@)= <wh > du <limint | (@) = hoy @)1 dy
Also, for € > 0, 3 vy such that

. |An (W) = B, (w)|? dp < €

for n > vy and ny > v, which yields

. |hn(w)— < w,h >|* dp < Supyglrf;k |hn(w) — hy(w)]? dp
But, for v > n; > vy,

v2ng

inf / (@) =@ dp<e = | |ha(w)—<w,h > du<e
7 Sl

Hence,

11



(hn(@)} T5< w, b > (23)

From Equation[ 17], for g(Z) in L2(R?)
N 2\ - e
9(%) = (m”) lim én(7)

for {¢,} C S. Since R! is complete in the | - | metric, and m is a continuous linear functional, the
mean of g is defined as

<m,g>= lim <m,d, > (24)
n—oo

Since [q <w,&> dp =E,[<w,§>] =< m,{ >, this means that

Ey[<w,g>]= lim E,[<w,¢n >] (25)

Furthermore,

/ |<w,¢n > —(<w,h >+ <m,g>)* du / |[<w,¢n > —(<w,h >+ <m,g>)

—<m,pp >+ <m, P, >|2 dp

< |(<wa¢n>_<ma¢n>)_<wah>
Sl

—(<m,g>—<m, ¢, >)|* du

IN

4] (Kw,dn>—<m,p>)— <w,h > du
Sl

+4 [ |<m,g>—<m,én > du
Sl

from Equation[ 23] and Equation[ 24] both of the integrals on the right go to zero as n — co.

Next define

<w,g>=<w,h >+ <m,g>=(m? li_>m < w, ¢, > in L?(p) (26)
n—oo
But, since ¢,, € D(R?), it follows from Equation| 18] that
<w, ¢n >= 4 6(53 - XT(faw; 'CZ.‘Oa tO))¢n(f) di = ¢H(XT(£5 w3 antO))
R
Hence, from Equation[ 25],
Eu[<w,g>] = lim By [¢0(Xr(i,w; o, t0))] (27)

From Equation[ 22] and Equation[ 24], and since p is a finite measure,

|<w,h>+<m,g>" du

/ |<w,g > du
S’ S’

IN

4/ |<w, h > du+4/ |<m,g>|* du
S’ S’
< o0

12



It then follows from Equation[ 16] that

| <w,9> e LIl <w, 9> l2u < o0

Since mP-convergence implies convergence in measure, it follows from Equation[ 26] that
<w,g>=(p) lim < w,d, >
n—00

which means that there is a subsequence {¢y, }52, C D(R?) such that

<w,g>= lim <w,én, >= lim ¢, (Xr(t,w;To,t0)) aa. weS

k— oo k—o0
If the set of exceptional values of w is denoted N, N C &’ with u(N) = 0, then
<w,g>= lim <w,d,, >= lim ¢, (X1, w; T, t0)) on S \N
k—o0 k—o0

For € > 0, 3 N, > 0 such that for ny > N,

[| <w, ¢, >|—|<w,g>|| < |<W,¢n, >—<w,g>| <e

= | <W,dn, >| < | <w,g>]|+e€ on S'\N

Since < w,g >€ L'(u) and u(S') = 1, by the Dominated Convergence Theorem,

lim b, (X1, w; Fo, t0)) dp = / <w,g> dp
M0 JSN\N S'\N
And, since pu(N) = 0, it follows that
Jim_ By [0, (X1 wi o, t0)] = Bu[< w,9>] (28)

Now, from Equation[ 17], 3 a subsequence {¢y, }32, such that
Oni (T) = g(Z) (ANa.e. k— o0
where A represents Lebesque measure. This means that for € > 0, 3 N, > 0 such that for nj > N,

| o, (B)] = |9(D)] | < 6, (Z) — 9(F)| <€ (A) ae.

If G C R is the exception set, A(G) = 0, and if the distribution function for the random variable
Xr(w), Fy_, is absolutely continuous, then the induced measure, p 3 is absolutely continuous with
respect to Lebesque measure, bz, K A, hence,

|Pn (D) < [9(D) +€  (pg,)ae.

And,

bn,, (T) — g(&) (NX‘T)a.e.

Consequently, if [. (|9(Z)| +¢€) dug, < oo, the Dominated Convergence Theorem can be used to
conclude that

/ b (7) dpig, — / o(#) dug, (20)
Rd Rd

13



In order to complete this discussion, the following Definition and Theorem from Burrill[2] are re-
quired:

Definition: A mapping S is a measurable transformation if the inverse image of a measurable set
is measurable.

Given two measure spaces (21, &1, 1) and (Q2, &2, u2), a set function can be defined on the o-algebra
&y as

H(E) = (S '(E)) Ee€é&

The following theorem then holds:

Theorem: Let S be a measurable transformation from (4, &1, 1) into (Q2, &, u2). Then for any

h:Q2—>§R*

/ hoSdm = [ hdé
Ql Q2

if h is non-negative or h is integrable with respect to ¢.
The random variable X7 (w) performs the following measurable transformation:
Xr: (8,B(S), 1) » (R, B(RY), ))
and the measure p g  is defined as
ng,(B)=pn(X7'(B))  BCH®
The probability measure p ¢ = determines the probability of all events involving the random variable

Xr(w).

Hence, if f : ¢ — R* and f is integrable with respect to u %, then

F(Fr () dp = / (@) dug, (30)
S Rd

If the functions ¢,, and g are integrable with respect to u Ry then from Equation[ 28],

E, <w,g>] = Ilim E, [¢nk(XT(w))]

Nk —>00

= lim ¢"k (XT(w)) d/l,

N —>00 S’

from Equation[ 30]

nE —>00

= lim /gR L 9n (D) dug,
from Equation[ 29]

/ 9(%) dp g,
§Rd

from Equation[ 30]

| 9w du
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From which it follows that

E, [< w,g >] = B, [9(Xr(i,w; 0, t0)) (31)

2.4.1 Total Mass

Again, let B be a compact set that contains the entire plume, and let A = {w € &' : Xr(f,w :
Zo,to € B}, then with g(Z) = xs(Z) it follows from Equation[ 31]

E,<w,g>] = E, [XB(XT(W))}
= Eu[xaW)]
= u(4)
2.4.2 Centroid
Let g(£) = z;xB(Z), then
E,[w,g>] = E, [XﬂXB(XT(w))]

= E, [XT XA(W)]

]
which is the same as Equation[ 13].

2.4.3 Second Moment
Let 9(#) = (2; — Eu[¥1,))(x; — E[X1,)x5(), then

Bu<w,9> = B, |[(Xr - BuXe)(Xr, - BulXr)xs(@)]

- /A (Rr, — Bo%0]) (R, — B,[Xs)) du

= B, [(%r, — E,[X0))(Xr, — E,lX7)]

which is the same as Equation[ 15].
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